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We present simulation data of first-order isotropic-to-nematic �IN� transitions in lattice models of liquid
crystals and locate the thermodynamic limit inverse transition temperature �� via finite-size scaling. We
observe that the inverse temperature of the specific-heat maximum can be consistently extrapolated to ��

assuming the usual � /Ld dependence, with the system size L, the lattice dimension d, and the proportionality
constant �. We also investigate the quantity �L,k, the finite-size inverse temperature where k is the ratio of
weights of the isotropic-to-nematic phase. For an optimal value k=kopt, �L,k versus L converges to �� much
faster than � /Ld, providing an economic alternative to locate the transition. Moreover, we find that �
� ln kopt /L�, with L� as the latent heat density. This suggests that liquid crystals at first-order IN transitions
scale approximately as q-state Potts models with q�kopt.
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I. INTRODUCTION

The investigation of the isotropic-to-nematic �IN� transi-
tion in liquid crystals via computer simulation is long estab-
lished. Decades ago Lebwohl and Lasher1 �LL� introduced a
simple lattice model, the LL model, to study this transition.
At each site i of a cubic lattice they attached a three-
dimensional unit vector d� i �spin� interacting with its nearest
neighbors via

H = − ��
�ij�

�d� i · d� j�p, �1�

where p=2 and with a factor 1 /kBT absorbed into the cou-
pling constant ��0, with kB as the Boltzmann constant and
T as the temperature. Despite its simplicity, the LL model
captures certain aspects of liquid-crystal phase behavior re-
markably well and has consequently received considerable
attention.2,3

A common problem in locating the IN transition via simu-
lation is the issue of finite system size. Phase transitions are
defined in the thermodynamic limit, whereas simulations al-
ways deal with finite particle numbers. In order to estimate
the thermodynamic limit transition point, it is typical to per-
form a number of simulations for different system sizes and
to subsequently extrapolate the results following some finite-
size scaling �FSS� procedure. Which procedure to use de-
pends on the type of transition, i.e., whether it is continuous
or first order. In three spatial dimensions, the IN transition is
typically first order; in two dimensions both continuous4–6

and first order7,8 IN transitions can occur, depending on the
details of the interactions.9–11 In this paper we focus on the
first-order case.

The literature on FSS at first-order transitions is quite ex-
tensive, for a review see Ref. 12, the majority of which deals
exclusively with the Potts model.13 An important result is
that the “apparent” transition inverse temperature �L,CV, ob-
tained in a finite system of size L, is shifted from the ther-
modynamic limit value �� as14,15

�L,CV = �� − �/Ld + O�1/L2d� , �2�

with proportionality constant ��0. Here �L,CV is the inverse
temperature where the specific heat in a finite system of size
L attains its maximum, d is the spatial dimension of the
lattice, and L denotes the linear extension of the simulation
box, generally square or cubic, with periodic boundary con-
ditions.

We emphasize that Eq. �2� was derived for the Potts
model where the proportionality constant is known to be

�Potts = ln q/L�, �3�

with q as the number of Potts states and L� as the latent heat
density in the thermodynamic limit.14,15 Interestingly, simu-
lations of the LL model have shown that the functional form
of Eq. �2� also works well for IN transitions.16,17 That is,
meaningful extrapolations of �L,CV can be performed al-
though the significance of � is not obvious. It certainly can-
not be related to the number of spin states, i.e., conform to
Eq. �3�, since the LL model is a continuous spin model, in
contrast to the discrete spin variables of the Potts model.18

In any case, based on the success of Eq. �2� in describing
finite-size effects in the LL model, it could be hoped that
other scaling relations, originally derived for the Potts
model, also remain valid. Of particular interest is the result
of Borgs et al.,15,19,20 who showed that for the Potts model
exponentially decaying finite-size effects are also possible.
The obvious advantage of exponential decay is that �� is
approached much faster with increasing L compared to the
power-law decay of Eq. �2�. This means that moderate sys-
tem sizes may suffice to locate the transition, thereby saving
valuable computer time. As liquid-crystal phase transitions
are in any case expensive to simulate, such a gain in effi-
ciency would certainly be highly desirable.

We will show in this paper that it is indeed possible to
locate first-order IN transitions from finite-size simulation
data with shifts that vanish much faster than 1 /Ld. This is
possible by considering �L,k, the inverse temperature at
which the “ratio of weights” of the isotropic and the nematic
phases is equal to a value k. This ratio of weights is obtained
from the order-parameter distribution PL,����, defined as the
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probability to observe an order parameter �, when simulating
a system of size L at inverse temperature �. In the vicinity of
the IN transition the distribution becomes bimodal, with one
peak corresponding to the isotropic phase and the other to
the nematic phase. The ratio of weights is simply the ratio of
the peak areas. Provided k is chosen optimally �L,k ap-
proaches �� extremely rapidly as L increases, yielding an
economic alternative over Eq. �2�. A prerequisite is that the
transition must be strong enough first order for the ratio of
weights to be meaningfully calculated.21 For this reason, we
do not consider the original LL model, as the transition is
extremely weak here, but a variation in it.

In this paper we first provide the details of the modified
LL model in Sec. II, together with a description of the simu-
lation method that was used to obtain the order-parameter
distribution. Next, we measure �� using the “standard” ap-
proach of extrapolating �L,CV via Eq. �2�, as well as using a
“different” approach based on �L,k. In particular, we demon-
strate how to locate the optimal value kopt along which finite-
size effects are minimal. As expected, both approaches are in
good agreement with the essential difference that �L,k con-
verges to �� already for very small systems. This fast con-
vergence property was observed at all transitions studied by
us, irrespective of space and spin dimension. We also con-
sider the finite-size scaling of the latent heat density and
show that for IN transitions, kopt becomes the “analog” of the
number of Potts states q. Finally we present a summary of
our findings in Sec. IV.

II. MODEL AND SIMULATION METHOD

A. Modified LL model

In order to study finite-size effects at phase transitions,
simulation data of high statistical quality are essential. This
sets a limit on the complexity of the models that can be
handled as well as on the system size. For our purposes
already the simple LL model is too demanding, the problem
being that the IN transition in this model is extremely weak.
Generally, in computer simulations, first-order phase transi-
tions are identified by measuring the probability distribution
of the order parameter.22 At the transition, this distribution
displays two peaks: one corresponding to the isotropic phase
and the other to the nematic phase. In the thermodynamic
limit, the peaks become sharper and ultimately a distribution
of two � functions is obtained. In finite systems, however,
the peaks are broad and possibly overlapping, especially
when the transition is very weak. Such behavior is observed
in the LL model: even in simulation boxes of L=70 lattice
spacings the peaks strongly overlap and the logarithm of the
peak height, measured with respect to the minimum in be-
tween, is less than 2kBT.17 Since the peaks overlap one never
truly sees pure phases, which complicates the analysis. In
order to yield reasonable results we require in this paper that
the peaks in PL,���� be well separated. More precisely, it
must be possible to assign a “cutoff” separating the peaks, on
which the final results may not sensitively depend. For this
reason we do not consider the original LL model but rather a
generalization of it, where the exponent p of Eq. �1� exceeds

the LL value. We expect this will lead to a much stronger
first-order IN transition,9–11 so distributions will display non-
overlapping peaks already in moderately sized systems. In
fact, by using a large exponent p in Eq. �1� strong first-order
IN transitions may be realized even in purely two-
dimensional systems.7,8 Hence, the model that we consider is
just the LL model of Eq. �1� but with p�2. Note the abso-
lute value � · � such that the system is invariant under inver-
sion of the spin orientation. We thus impose the symmetry of
liquid crystals although we believe that our results also apply
to magnetic systems.

Note that the use of a large exponent p in Eq. �1� may also
yield a better description of experiments on confined liquid
crystals. The latter systems are quasi-two-dimensional. If one
studies the LL model in two dimensions, i.e., with p=2 and
three-dimensional spins, a true phase transition appears to be
absent.23 In contrast, experiments clearly reveal that transi-
tions do occur. In fact, these transitions appear to be of the
IN type and are quite strong, as manifested by pronounced
coexistence between isotropic and nematic domains.24 Such
behavior cannot be reproduced easily with the standard LL
model, but it can be using the modified version considered in
this work, with a sufficiently large exponent p.

B. Transition matrix Wang-Landau sampling

Following earlier work on the LL model16,17 our simula-
tions are based on the order-parameter distribution. We use
the energy E of Eq. �1� as order parameter and aim to mea-
sure PL,��E� as accurately as possible. Recall that PL,��E� is
the probability to observe energy E, in a system of size L, at
inverse temperature �. Depending on the case of interest, the
simulations are performed on square or cubic lattices of lin-
ear size L using periodic boundary conditions.

In order to obtain PL,��E� we use Wang-Landau �WL�
sampling25,26 additionally optimized by recording some ele-
ments of the transition matrix �TM�.27,28 The aim of WL
sampling is to perform a random walk in energy space such
that all energies are visited equally. To this end, we use
single spin dynamics, whereby one of the spins is chosen
randomly and given a new random orientation. The new state
is accepted with probability

p�EI → EJ� = min� g�EI�
g�EJ�

,1	 , �4�

with EI and EJ as the energies of the initial and final states,
respectively, and g�E� as the density of states. The density of
states is unknown beforehand and g�E� is initially set so
g�E�=1. Upon visiting any particular energy the correspond-
ing density of states is multiplied by a modification factor
f �1. We also keep track of the histogram H�E�, counting
the number of times each energy E is visited. Once
H�E� contains sufficient information over the range of
energy of interest, the modification factor f is reduced and
the energy histogram H�E� is reset to zero. These steps are
repeated until f has become close to unity, after which
changes in the density of states become negligible. The
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sought order-parameter distribution is then obtained from
PL,��E�	g�E�exp�−�E�.

The above procedure is the standard WL algorithm, which
works extremely well in many cases.1 However, it has been
noted28,29 that the WL algorithm in its standard form reaches
a limiting accuracy, after which the statistical quality of the
data no longer improves, no matter how much additional
computer time is invested. Hence, these authors also propose
to measure the TM elements T�EI→EJ�. These are defined as
the number of times that, being in a state with energy EI, a
state with energy EJ is proposed, irrespective of whether the
new state is accepted. From the TM elements one can esti-
mate


�EI → EJ� =
T�EI → EJ�

�
K

T�EI → EK�
, �5�

which is the probability that being in state with energy EI, a
move to a state with energy EJ is proposed. This is related to
the density of states via27

g�EI�
g�EJ�

=

�EJ → EI�

�EI → EJ�

. �6�

Hence, by recording TM elements the density of states can
also be constructed, the great advantage being that rejected
moves also give useful information.

To combine WL sampling with the TM method we some-
what follow Ref 28. At the start of the simulation the density
of states g�E� is set to unity while the energy histogram H�E�
and the TM elements are set to zero. We perform one WL
iteration, i.e., accepting moves conform Eq. �4�, using a high
modification factor ln f =1. At each move both H�E� and the
TM elements are updated. We continue to simulate until all
bins in H�E� contain at least n entries over the chosen energy
range. We then use the TM elements to construct a new
density of states, which serves as the starting density of
states for the next WL iteration. For the next iteration H�E� is
reset to zero, the modification factor is reduced to �ln f� / l but
the TM elements remain untouched. These steps are repeated
until ln f 
O�10−20�, after which we store the corresponding
density of states gP�E�. This marks the end of the “prepare”
stage.

Next we proceed with the “collect” stage. The TM ele-
ments are set to zero, whereas H�E� is no longer needed.
During collection we sample according to Eq. �4� using
gP�E� as the estimate for the density of states. However, only
the TM elements and not gP�E� are further updated. As col-
lection proceeds the accuracy of the TM elements increases
indefinitely, as does the accuracy of the density of states
obtained from them. The reason to have a separate collect
stage is because during prepare detailed balance is not
strictly obeyed due to the initially large modification factor
f .28 For this reason, gP�E� could be biased and we are reluc-
tant to perform finite-size scaling with it.

During the prepare stage small values n
10 together
with large values l
5–10 can be used. This significantly
speeds up the simulation and similar observations have been
made in other works.28 Histograms were collected by dis-

cretizing the energy in bins of resolution �=1kBT. In order
to avoid “boundary effects” during WL sampling states are
counted as in Ref. 30. To reduce memory consumption, only
the nearest-neighbor elements T�EI→EI��� of the TM
along with the normalization �KT�EI→EK� are stored. Since
single spin dynamics are used, these are the dominant en-
tries. Constructing the density of states using Eq. �6� and
recursion is then a straightforward matter. If all TM elements
were to be used, constructing the density of states becomes
more complex while not yielding significantly higher
accuracy,27 so this is not attempted here. The required com-
puter time depends sensitively on the size of the system. For
small systems consisting of 
1000 spins, the prepare stage
can be completed in as short as 15 min. For larger systems
containing 10 000 spins or more this can take more than 1
week. In these cases it is necessary to collect the density of
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FIG. 1. Logarithm of PL,��E� using p=10 in Eq. �1� for system
sizes L=10,12,15 �from top to bottom�, cubic lattices, and three-
dimensional spins. In each of the distributions � was tuned so the
peaks are of equal height. The barrier �F, here marked for the
L=10 system, is defined as the height of the peaks measured with
respect to the minimum in between. The peak-to-peak distance �

corresponds to the latent heat density. Note that we have plotted the
distributions as a function of the negative-energy density: the left
peak thus corresponds to the isotropic phase and the right peak to
the nematic phase.
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FIG. 2. Variation in �F versus Ld−1 for d=3 dimensional lat-
tices, three-dimensional spins, and the various values of p as
indicated.
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states over a number of separate energy intervals with a
single processor assigned to each interval. Such a parallel-
ization is trivially implemented. The collect phase typically
lasts as long as the prepare phase except for very large sys-
tems, where it is found that it takes a much longer time to
obtain an equivalently accurate density of states.

III. RESULTS AND ANALYSIS

We have performed extensive simulations of Eq. �1� vary-
ing both the space and spin dimension, as well as the expo-
nent p. More precisely, the following scenarios are consid-
ered: �1� three-dimensional lattices and three-dimensional
spins with p=5–45, �2� two-dimensional lattices and three-
dimensional spins with p=20–50, and �3� two-dimensional
lattices and two-dimensional spins with p=150–1000.

On three-dimensional lattices, it is well accepted that the
IN transition is first order. The fact that the IN transition can
also be first order in two dimensions is perhaps less well
known. In this case, first-order transitions only appear pro-
vided the exponent p of Eq. �1� is sufficiently large.9–11

Hence, in two dimensions, one generally needs p�2 in order
to observe a first-order transition and it is important to verify
that such a transition is indeed taking place. If one addition-
ally lowers the spin dimension from 3→2, even greater ex-
ponents p are required. For this reason, the chosen p ranges

vary significantly between the three scenarios.

A. Determining the order of the transition

In order to verify the presence of a first-order transition
we use the scaling method of Lee and Kosterlitz.31,32 Recall
that the order-parameter distribution becomes bimodal in the
vicinity of the IN transition �see Fig. 1 for an example�. The
idea of Lee and Kosterlitz is to monitor the peak heights �F
of the logarithm of the order-parameter distribution, mea-
sured with respect to the minimum “in between” the peaks.
At a first-order transition �F corresponds to the formation of
interfaces between coexisting isotropic and nematic
domains.33 In d spatial dimensions it is therefore expected
that �F	Ld−1, providing a straightforward recipe to identify
the transition type: a linear increase in �F versus Ld−1 indi-
cates that a first-order transition is taking place with the
slope yielding the interfacial tension,33 whereas for a con-
tinuous transition �F becomes independent of L or vanishes
altogether if no transition takes place at all in the thermody-
namic limit. In Fig. 2 �F is plotted for the purely three-
dimensional case; the linear increase is clearly visible, con-
firming the presence of a first-order transition. For two-
dimensional lattices the results have been collected in Figs. 3
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FIG. 5. Estimation of �� via extrapolation of �L,CV using Eq. �2�.
Shown is �L,CV versus 1 /Ld using �a� p=10, cubic lattices and three-
dimensional spins, �b� p=20, square lattices and three-dimensional
spins, and �c� p=150, square lattices and two-dimensional spins.
The open symbols are simulation data and the lines are fits to Eq.
�2�.
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and 4. Once again the presence of a first-order transition is
confirmed. Note that on two-dimensional lattices the slopes
of the lines correspond to line tensions.

B. Extrapolation of �L,CV

Next, we measure the thermodynamic limit inverse tem-
perature �� by means of extrapolating �L,CV via Eq. �2�. Re-
call that �L,CV is the finite-size inverse temperature where the
specific heat

CL =
�E2� − �E�2

Ld �7�

attains its maximum. Shown in Fig. 5�a� is �L,CV versus 1 /Ld

for the purely three-dimensional case using p=10—results
for different p are qualitatively similar and therefore not ex-
plicitly shown. In agreement with earlier simulations of the
“original” LL model,16,17 the data are well described by Eq.
�2� and from the fit �� can be meaningfully obtained. The
resulting fit parameters are collected in Table I. Repeating
the same analysis for two-dimensional lattices yields similar
results; some typical plots are shown in Figs. 5�b� and 5�c�
with the resulting fit parameters collected in Tables II and III.

C. Extrapolation of �L,k

We now arrive at the main result of this paper, namely, the
estimation of �� by monitoring �L,k. Recall that �L,k is defined
as the finite-size inverse temperature where the equality

WN/WI = k �8�

is obeyed, with WN and WI as the areas under the nematic
and isotropic peaks of the order-parameter distribution, re-
spectively. No matter what value of k is used, provided it is
positive and finite, we expect that limL→� �L,k=��. The rea-
son is that in the thermodynamic limit a bimodal order-
parameter distribution survives only at �� and not anywhere
else.32 Hence, keeping the area ratio fixed at some value of k
while increasing L, �L,k will definitely approach ��. The rate
of the convergence, however, does depend on k. Assuming
that the prediction of Borgs and Kotecky for the Potts model
also holds at first-order IN transitions, it should be possible
to locate an optimal value kopt at which the convergence to ��

is fastest and hopefully faster than 1 /Ld. Therefore, we pro-
pose to manually inspect the convergence of �L,k using sev-
eral values of k.

A prerequisite for numerically solving Eq. �8� is that the
transition must be sufficiently first order in order for bimodal
distributions PL,��E� with well-separated peaks to appear. By
this we mean that the barrier �F, defined in Fig. 1, is large
enough. The areas of the nematic and isotropic peaks may
then be calculated using

TABLE I. Properties of the IN transition of Eq. �1� for three-dimensional lattices and three-dimensional
spins versus p. Listed are the fit parameters ��,CV and � of Eq. �2�, the best estimate ��,k obtained from the
convergence of �L,k along kopt, the logarithm of kopt with uncertainty �k, the latent heat density L�, and the
ratio ln kopt /L�.

p ��,CV � ��,k ln kopt��k L� ln kopt /L�

5 1.3969 6.62 1.3970�0.001 2.7�0.6 0.358�0.010 5.9–9.2

8 1.5207 5.28 1.5207�0.001 5.0�0.2 0.908�0.005 5.3–5.7

10 1.5862 4.28 1.5864�0.001 5.3�0.5 1.156�0.005 4.2–5.0

15 1.7126 3.94 1.7126�0.001 6.0�0.2 1.523�0.002 3.8–4.1

20 1.8063 3.76 1.8063�0.001 6.4�0.3 1.727�0.002 3.5–3.9

45 2.0838 3.55 2.0838�0.001 8.1�1.0 2.120�0.001 3.3–4.3
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FIG. 6. Variation in �L,k versus L for three-dimensional lattices
and three-dimensional spins using different exponents p as indi-
cated. The symbols are simulation data; the lines serve to guide the
eyes. The central curves in each plot show �L,k using k=kopt along
which finite-size effects are minimal; also shown is �L,k using
k=kopt−5�k �lower curves� and k=kopt+5�k �upper curves�. The
methods for locating kopt and �k are explained in the text and the
resulting values as well as the estimates of �� are listed in Table I.
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WN = �
−�

Ec

PL,��E�dE, WI = �
Ec

0

PL,��E�dE , �9�

where we remind the reader that the energy in our model is
negative. The details of defining the cutoff energy Ec are
somewhat arbitrary but as states around Ec contribute expo-
nentially little to the peak areas, the precise form does not
matter.34 In this work Ec is taken to be the average
Ec=�EPL,��E�dE, with PL,��E� obtained at equal height, i.e.,
as in Fig. 1. Once Ec has been set its value is kept fixed while
solving Eq. �8�.

For the purely three-dimensional case, the behavior of �L,k
is shown in Fig. 6. Using various exponents p in Eq. �1�, we
have plotted �L,k versus L for several values of k. The data
are consistent with the expectation that regardless of k, �L,k
converges to a common value, corresponding to ��. Note
also that �� is approached from above for large k and from
below for low k. Hence, we can indeed identify an optimal
value kopt along which finite-size effects are minimal. The
optimum can be estimated by locating, for a pair of system
sizes Li and Lj, the inverse temperature �ij where for both
system sizes the same ratio kij of the peak areas is observed.
By considering all available pairs of system sizes, the aver-
age and root-mean-square fluctuation in �ij and kij can be
calculated, which then yield �� and kopt with uncertainties, as
shown in Table I. Although kopt itself is not known very
precisely since �k is quite large, very accurate estimates of
�� can still be obtained as this quantity is rather insensitive to
the precise value of kopt being used. This means that the
series �L,k also provides a valid method for locating IN tran-
sitions. The corresponding estimates of �� are in good agree-
ment with those obtained via extrapolation of �L,CV, as in-
spection of the various tables indicates. The practical
advantage of using �L,k with k=kopt is that the L dependence
is very weak, so much that �� is captured already in small
systems. Similar findings were obtained using two-
dimensional lattices, of which some typical plots are pro-

vided in Figs. 7 and 8 with the corresponding numerical
estimates collected in Tables II and III.

For non-optimal values k�kopt, we observe that the shift
��−�L,k	1 /Ld, i.e., the shift vanishes as a power law in the
inverse volume similar to �L,CV. At the optimal value
k=kopt, finite-size effects in �L,k are typically too small in
order for a meaningful fit to be carried out. Hence, our data
confirm Borgs and Kotecky in the sense that optimal estima-
tors can be defined, which converge onto �� faster than 1 /Ld;
whether the optimal convergence is indeed exponential re-
quires more accurate data, which is currently beyond our
reach.35

An alternative but completely equivalent method to inves-
tigate the convergence of �L,k is presented in Refs. 34 and
36–38, albeit for the Potts model. The idea is to plot the area
ratio WN /WI versus � for several system sizes. The resulting
curves are expected to reveal an intersection point at the
transition inverse temperature; the value of the area ratio at
the intersection then yields kopt. For completeness we have
prepared one such plot �see Fig. 9�. The curves indeed inter-
sect and give estimates of �� and kopt that are fully consistent
with those reported in Table I.

D. Latent heat density

It appears that scaling relations derived for the Potts
model also work remarkably well at IN transitions. In agree-
ment with earlier simulations of the LL model,16,17 the valid-
ity of Eq. �2� is confirmed additionally by us. Furthermore,
our data suggest that an analog of the Borgs and Kotecky
prediction, namely, that finite-size effects vanish faster than
1 /Ld at appropriate points, can be defined. In this case, it is
needed to measure �L,k using the optimal value k=kopt. In the
Potts model it holds that kopt=q, where q is the number of
Potts states. In other words, finite-size effects in the Potts
model are minimized when the ratio of the peak areas in the
order-parameter distribution is held fixed at q. Based on our
results, it seems reasonable to assume that scaling relations

TABLE II. Similar to Table I but for two-dimensional lattices and three-dimensional spins.

p ��,CV � ��,k ln kopt��k L� ln kopt /L�

20 2.7695 5.18 2.7698�0.001 4.1�0.4 0.7145�0.001 5.2–6.3

25 2.8678 4.84 2.8679�0.001 4.5�0.2 0.8900�0.001 4.8–5.3

30 2.9517 4.69 2.9517�0.001 4.8�0.2 1.0023�0.001 4.6–5.0

35 3.0240 4.58 3.0241�0.001 5.2�0.6 1.0832�0.001 4.2–5.4

40 3.0882 4.52 3.0882�0.001 5.2�0.2 1.1432�0.001 4.4–4.7

45 3.1456 4.47 3.1455�0.001 5.2�0.5 1.1936�0.001 3.9–4.8

50 3.1976 4.50 3.1976�0.001 5.6�0.5 1.2320�0.001 4.1–5.0

TABLE III. Similar to Table I but for two-dimensional lattices and two-dimensional spins.

p ��,CV � ��,k ln kopt��k L� ln kopt /L�

150 2.063 3.67 2.0628�0.0005 1.9�0.8 0.648�0.005 1.7–4.2

1000 2.486 3.31 2.4865�0.0006 4.8�1.3 1.270+0.005 2.8–4.8
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for the Potts model also hold at IN transitions but with q
replaced by kopt.

To test this assumption we consider the proportionality
constant � from Eq. �2�, which is given by Eq. �3� for the
Potts model. If q can be replaced by kopt, � should corre-
spond to ln kopt /L�, where L� is the latent heat density. The
latter can be obtained independently from CL,max=L�

2 Ld /4,
where CL,max is the maximum value of the specific heat in a
finite system of size L.15 Hence, we introduce the latent heat
estimator

�
L,1 = 
4CL,max/Ld, �10�

which should approach L� as L→�. Additionally, the latent
heat density can be read off directly as the peak-to-peak dis-
tance in the energy distribution marked �
 in Fig. 1. Nu-
merically this is expressed by ML=2��E− �E��� /Ld; plotting
ML versus � gives a maximum �
L,2, which in the limit
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L→� also approaches L�. Typical behavior of �
L,i is
shown in Fig. 10. As expected, both latent heat estimators
converge to a common value, which can be read off reason-
ably accurately; the resulting estimates of L� are given in the
various tables. Note also that L� is approached from below
in three dimensions, whereas in two dimensions, it is ap-
proached from above. If an appropriate number of two-
dimensional lattice layers stacked on top of each other were
simulated, it is likely that a crossover regime could be found
where �
L,i depends only weakly on L, as these systems are
effectively in between two and three dimensions.

Having measured L�, the ratio ln kopt /L� is easily ob-
tained, which may then be compared to � �see Tables I–III�.
The uncertainty is admittedly rather large, but within numeri-
cal precision, and the relation ln kopt /L��� appears to hold.

IV. SUMMARY

In this paper we have presented simulation data of first-
order isotropic-to-nematic transitions in lattice liquid crystals
with continuous orientational degrees of freedom for various
space and spin dimensions. As with earlier simulations of
this type,16,17 we find that the extrapolation of the finite-size
inverse temperature of the specific-heat maximum �L,CV can
be consistently performed assuming a leading � /Ld depen-
dence exactly as in the Potts model. Inspired by this result,
we have investigated an alternative approach to locate the
transition inverse temperature using estimators �L,k, defined
as the finite-size inverse temperature where the ratio of peak
areas in the energy distribution is equal to k. In agreement
with the Potts model, �L,k converges to �� much faster than
1 /Ld, provided an optimal value k=kopt is used. Moreover,
the ratio kopt /L�, with L� as the latent heat density, is re-
markably consistent with the proportionality constant � from
the scaling of �L,CV. This leads us to conclude that finite-size
scaling predictions originally proposed for first-order transi-

tions in the Potts model remain valid at first-order IN transi-
tions too but with the number of Potts states q replaced by
kopt.

It is perhaps somewhat surprising that a continuous spin
model at a first-order transition, such as the LL model, scales
in the same way as the Potts model, which is, after all, a
discrete spin model. In fact, Borgs and Kotecky20 have re-
marked that the derivation of their scaling results cannot be
easily extended to continuous spin models. Nevertheless, the
LL model and its variants may be more closely connected to
the Potts model than one may initially think. Note that for
large p the Hamiltonian of Eq. �1� becomes increasingly
Potts-like, in the sense that the pair interaction approaches a
� function: limp→��d� i ·d� j�p=��d� i ,d� j�. This implies that neigh-
boring spins only interact when they are closely aligned and
are otherwise indifferent to each other, just as in the Potts
model. It has indeed been suggested that such models ap-
proximately resemble q-state Potts models with q�
p.9 The
observed trends in this work are certainly consistent with this
interpretation. For all cases considered the strength of the
transition increases with p, as manifested by the growing
latent heats and interfacial tensions, exactly as in the Potts
model with increasing q. Also the upward shift of �� with p
is consistent with the Potts model. However, it is clear that
new theoretical approaches are needed to fully understand
finite-size effects at first-order transitions in the models stud-
ied here. We hope that the present simulation results may
inspire such efforts.
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